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Abstract—In this paper, we introduce the RA-DUCKNet, a
novel architecture for road segmentation in satellite images,
which combines the Residual Attention UNet and parts of
the DUCK-Net Model. We further studied the performance
of multiple existing encoder and decoder models on the task
of road segmentation. In order to train the models, we created
a dataset consisting of various satellite images of urban areas.
Finally, the best encoder-decoder combinations as well as the
RA-DUCKNet Model were combined in an ensemble model
and expanded with a test time augmentation module achieving
a public score of 0.94497 on the ETHZ CIL Road Segmentation
2023 Kaggle Competition.

I. INTRODUCTION

The worldwide road network has a length of around
33 million km and is ever-changing. New roads are built,
the course of existing roads is changed or roads vanish
completely on a daily basis. As a result, keeping maps up-
to-date can be quite expensive when done manually. The
development of automatic methods is therefore crucial. A
novel approach to solving this challenge is the usage of
road segmentation models on satellite images. Despite the
high resolution of satellite images, it remains a difficult task
as there are multiple objects in satellite images, such as
rivers, parking areas, or railways, with high similarity to
roads. Further, roads may be obscured by trees or buildings.
As of today, deep convolutional neural networks (DCNN)
have been quite successful in segmentation tasks. Inspired
by two recently published DCNN models, namely Residual
Attention UNet (ResAttUNet) [1] and Deep Understanding
Convolutional Kernel UNet (DUCK-Net) [2], we developed
a new architecture that combines the main building blocks
of these two models.

Additionally, we build models using the common approach
of combining pre-trained feature extraction models such
as a ResNet [3] or EfficientNet [4] as an encoder with
a CNN-based decoder like UNet++ [5]. We measure their
performance on a road segmentation task and combine the
best models in an ensemble together with the RA-DUCKNet
for our final model. Finally, we created a new dataset
containing some 90’000 satellite images with a ground truth
mask from urban areas in the United States. We train all our
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models primarily on this dataset. Our code is available on
Github [6].

II. MODELS AND METHODS
A. ResAttUNet with DUCK-blocks

1) ResAttUNet: The ResAttUNet [1] is a further devel-
opment of the UNet Model by Ronneberger et al. [7]. The
UNet Model consists of multiple Downsampling layers used
as an encoder and Upsampling layers acting together as a
Decoder. Between the last downsampling layer and the first
upsampling layer, multiple residual blocks are placed for
deep feature extraction. We omit a more detailed explanation
of the different layers and refer to the original UNet paper.
ResAttUNet extends the UNet architecture by appending
a new attention module called Convolutional Attention
Module (CBAM) to each downsampling, upsampling, and
residual layer. CBAM itself consists of two sub-modules,
a channel attention module (CAM) and a spatial attention
module (SAM), both generating an attention map. The first
one leverages the inter-channel relationship of features by
calculating the maximum and mean value for each channel
as can be seen in Figure II-Al.1. While the latter focuses
on the inter-spatial relationship of the features computing
maximum and average across the channels as shown in
Figure II-A1.2. In both cases, the extracted features are then
further processed with some additional layers and a sigmoid
activation function at the end.

The two modules are executed sequentially. The input of
CAM is the output of the layer CBAM is appended to. For
an upsampling layer, this would be the output of the second
convolutional layer. CAM’s input and output combined
via element-wise multiplication serve as input for SAM.
An elementwise computation of SAM’s input and output
produces the final output of the whole module.

2) DUCK-blocks: DUCK-Net [2] is another example of
modifying an existing encoder-decoder structure by adding
additional modules. As before with ResAttUNet, the un-
derlying base model is the well-known UNet. The authors’
novel convolutional block, DUCK block, should enable more
in-depth feature selection to predict the borders of the
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detected objects better.

A DUCK block can be split into multiple different types of
blocks. The Residual block, not to confuse with the residual
layer of the UNet, applies multiple small convolutions (3x3
kernel) to extract the small details that make a road. In the
DUCK block, residual blocks are repeated multiple times to
simulate slightly bigger kernel sizes like 5x5 or 9x9.

The Midscope and the Widescope block are used to gather
spatial correlations on a bigger scale. Both apply dilated con-
volution. The dilation spreads the information of the pixels
within a kernel to a larger area, while losing information of
smaller details. Since the Widescope block uses one dilated
convolution more, the effect is even stronger than in the
Midscope one. Hence, Widescope blocks simulate larger
kernels focusing on correlations on larger spatial areas of
the image than Midscope blocks.

Lastly, a Separable block simulates NxN kernels for large
N by combining a Nx1 with a 1xN kernel.

A DUCK block combines the aforementioned blocks in a
parallel way using 6 pipelines as demonstrated in Figure
II-A2. In the end, a simple addition of the pipeline outputs
is applied.
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Figure II-A2.1.  Architecture DUCK-block. Figure 6, Dumitru et al. [2]

3) Combined Model: We now combine the two ideas
explained above into a new model named ResidualAtten-

tionDuckNet (RA-DUCKNet). Our model inserts DUCK
blocks into the ResAttUNet architecture. A visual depiction
of our model is represented in Figure II-A3. The model
consists of 5 downsampling and upsampling layers as well
as 3 residual layers between the encoder and the decoder.
Specifically at each downsampling layer, we first apply a
Downsample block with CBAM. The Downsample block
with CBAM is followed by a DUCK block using the output
of the CBAM as its input. The outputs of the DUCK-
block and the CBAM are finally combined by addition and
forwarded to the layer below combined with features from
an additional feature extraction network. The upsampling
process is quite similar. Each layer consists of an upsample
block with CBAM attached to it at the beginning and a
DUCK block. Besides the output from the layer below, the
CBAM of the upsample block also takes the output of the
DUCK-block at the downsampling layer on the same level
as input, which is marked by the skip connections in Figure
II-A3. Between the residual blocks, there are no DUCK
blocks.

B. SMP Models

In addition to our own model, we analyze multiple
established models. For all of these models, we utilize
the implementations from the well-known “Segmentation
models pytorch” (SMP) library [8]. These models work in
the same encoder-decoder way as UNet however we leverage
a bigger encoder network like ResNet [3] or EfficientNet [4].
The decoder is then based on segmentation-specific models
such as UNet [7], UNet++ [5], or FPN [9]. Specifically,
we use the ResNet and EfficientNet encoders both pre-
trained on ImageNet [10]. We then train the encoder-decoder
combination on the Wachterberg dataset. As decoders, we
evaluated a suite of different models and landed on the
aforementioned ones.

C. Ensemble Technique

Using our own model and the additional models we then
build one ensemble model. This helps reduce variance and
noise to give us more robust and better final predictions. Our
Ensemble is a simple weighted mean over the raw output of
the different models. This approach allows us to weight the
predictions of models with especially good validation scores
more. We decided to use a mean over a voting ensemble as
we don’t lose the information on the model’s confidence in
its prediction.

D. Loss function

A quite prevalent loss in image segmentation is the soft
Dice-Loss, which is a differentiable reformulation of the
Dice Similarity Score. This score is calculated as

2+xTP
2xTP+ FP+FN
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The Dice-Loss does not directly factor in the topology of
the road network. The centerline Dice-Loss (short clDice-
Loss) by Shit et al. [11] on the other side encourages the
preservation of the topology by depending not only on the
two masks but also on their skeletons.

Our loss function linearly combines the Dice-Loss and the
clDice-Loss to exploit the properties of both losses.
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A detailed explaination of the two losses can be found in
the Appendix A.

E. Additional Dataset

For the training, we mainly use an additional dataset of 90
thousand aerial images of the greater area around US cities,
namely Los Angeles, Boston, Houston, Chicago, Phoenix,
Philadelphia, and San Francisco which have an especially
clear street and highway network. We call this dataset the
Wachterberg dataset. It is built by using the google maps
static API to pull the images and masks. The dataset consists
of 400 by 400 Images. After some simple postprocessing, we
get pretty good results which are mostly comparable to the
dataset provided through the Kaggle competition [12]. Some
example images with masks of our dataset are presented in
Appendix C.
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III. RESULTS
A. Analysis of SMP Models

In the first stage, we investigated the effectiveness of
the models provided by the SMP library. Since testing all
possible combinations of encoder and decoder network was
not possible in the given amount of time, we fixed the
encoder network on the ResNet-Architecture by He et al.
[3] to compare the available decoder networks. The best
performance was achieved by the DeepLabV3+ [13] decoder
and the PAN [14] decoder. Next, we compared the different
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Architecture of our RA-DUCKNet model which combines ResAttUNet with DUCK-blocks and a feature extraction model.

encoders whilst fixing the decoder on the UNet++ model
[5]. The experiment showed that the two EfficientNet [4]
variants perform the best with b5 slightly outperforming the
b7 variant. All other models performed significantly worse.
All results of the encoder and the decoder comparison can be
found in Appendix D. Lastly, we ran some different encoder-
decoder combinations to see if the previous results hold for
different encoders and decoders respectively. The results of
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Figure III-A0.1.
tions.

Comparison of different encoder and decoder combina-

our runs are visually presented in Figure III-A. As one can
see the results hold for the most part with the exception of
UNet++ performing significantly better with an EfficientNet
encoder instead of a ResNet encoder. In light of these results,
we settled on a DeepLabV3+ and UNet++ decoder both with



an EfficientNetB5 encoder.

B. Model comparison

As Baselines models we use the basic UNet by Ron-
neberger et al. [7] and the RessidualAttentionUNet as pro-
posed by Mohammed et al. [1]. We compare them to
our own model RA-DUCKNet as well as the two best-
performing models from our study in Section III-A, namely
DeepLabV3+ and UNet++ both with an EfficientNetB5
encoder, on Intersection-over-Union (IoU), Accuracy, Re-
call, F1- and F2-score. For the comparison, we trained all
models exclusively on our Wachterberg dataset for up to 30
Epochs. The mentioned scores were then evaluated across
the dataset provided through the Kaggle competition [12].
Due to the computational effort of training the models, we
did not train models multiple times. Further, we did not
run any hyperparameter optimizations. We can see that our

Table I
MODEL METRICS ON THE DATASET PROVIDED THROUGH THE KAGGLE
COMPETITION.

[ Model [ ToU [ FI | F2 [ Accuracy [ Recall |
UNet 058 | 0.73 | 0.71 0.95 0.68
ResAttUNet 0.60 | 0.75 0.72 0.95 0.68
RA-DUCKNet | 0.68 | 0.81 | 0.78 0.97 0.74
DeepLabV3+ 0.71 0.83 | 0.79 0.97 0.75
UNet++ 0.73 | 0.84 | 0.80 0.97 0.76

architecture significantly outperformed the UNet and the
ResAttUNet baseline. However, our other models which
leverage bigger encoder networks still outperformed RA-
DUCKNet. Specifically, the EfficientNet encoders seem to
have performed the best out of the ones we tested.

For our final submission, we opted for an ensemble made
up of all the models in Table I except for the baselines. Fur-
ther, after training on the Wachterberg Dataset, we finetune
the models using the training set of the Kaggle Competition.
In the final prediction, we also apply test time augmentation.
This technique creates multiple different modifications of the
image, which all are sent through the network. In the end,
the final mask is computed as an average of the outputs
of the modified images. As mentioned above we weighted
the predictions of the models by their validation score. This
ensemble achieves a public score of 0.94497 on the Kaggle
competition [12].

IV. DISCUSSION

We think that our model lacks behind the other compa-
rable models due to multiple reasons. The first reason is
that the other models likely utilize the encoder networks
better. At the moment we just take the encoder features and
concatenate them with the other network features, which we
then compress into a more manageable number of channels.
This might cause some of the extracted features to get lost. A
better way to include the features might be to compress the

channels from the previous level of the UNet so that we can
use the raw encoder features. Further, it might be beneficial
to replace the skip connection around the DUCK blocks and
add an additional convolutional layer as in the original paper
by Dumitru et al. [2]. This would allow the network to only
propagate important details that might get lost because of the
DUCK block. Another reason might be that our networks
seem to be more unstable in training, especially on the
ClIDice loss. During training, we observed that the model
sometimes breaks in evaluation mode and produces Nan-
values. This might be due to suboptimal hyperparameter
choices. However, due to resource constraints, we were not
able to test training the model with for example a bigger
batch size or significantly lower learning rate. What is sur-
prising as well, is the poor performance of the ResAttUnet.
This might point to the network being poorly suited for this
specific task. It would be interesting to study in future work
whether the performance of the observed models is different
for other segmentation tasks such as the more common task
of polyp segmentation.

We find that the EfficientNet models perform the best out
of the ones we tested. We reason that this network strikes
the right balance in terms of the size of the network (number
of parameters) to the size of our dataset. This also makes
sense as it has one of the best Top-1 Accuracy scores on the
ImageNet task of the networks that we tested.

One can further notice that the encoder choice affects the
performance of the decoder. This means that some decoder
networks seem to be significantly better at incorporating fea-
tures from some feature encoders than others. Specifically,
UNet++ [5] jumps from one of the worst models in our
decoder comparison with a ResNet encoder to one of the
best models with the EfficientNet encoder.

V. SUMMARY

We presented a new architecture for image segmentation
by expanding the ResAttUNet-Architecture with DUCK-
blocks. On the specific road segmentation task of the Kaggle
Competition, our new architecture clearly outperforms the
unmodified ResAttUNet-model on multiple segmentation.
scores. For better training, an additional dataset was cre-
ated containing 90’000 satellite images of urban areas. We
further studied the performance of multiple combinations of
established encoder and decoder architectures. Finally, we
created an ensemble model consisting of our own model
RA-DUCKNet and the best encoder-decoder combinations
including test-time augmentation and finetuning achieving a
public competition score of 0.94497.
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APPENDIX

A. Loss Function

1) Dice Loss: Since the Dice Similarity Score is not
differentiable, it cannot be used as a loss function. However,
there exists a reformulation of the score, called soft Dice-
Loss, which is indeed differentiable. The soft Dice-Loss re-
places TP with ), y; * §; and expression 2+T P+F P+FN
with D, y; * y; + >, Ui * ;. Notice, that in a binary setting
where both the pixels of the masks and the ground truth are
labeled either O or 1 the two expressions are actually equal.

Lo 1 2o Yi * Ui 1 (y,9)

Dice — ~ ~ ~ ~
D Yi* i T 3 Ui * Ui (v, ) + (9, 9)
2) Centerline Dice Loss: The clDice loss considers two

scores, the Topology Precision (7},..) and Topology Sensi-

tivity (T'sens). Tprec is defined as the fraction of the ground
truth skeleton that lies within the prediction mask. The
higher T),.. the better the coverage of the road topology.

Hence, a high T}, is desirable for a good model. However,

a high T),,... score does not necessarily translates into a

good prediction. A complete white image for example would

always cover the whole skeleton and therefore result in a

score of 1. Consequently, we need a second measurement

to prevent predictions from over-predicting the positive
label. The aforementioned problem can be solved by adding

Topology Sensitivity to the loss function. T, is computed

identically to T}, but this time using the skeleton of the

prediction and the mask of the ground truth. The Tseps
score punishes over-prediction. The skeleton of a completely
white image is also a completely white image. Most of this
skeleton would not be covered by the ground truth mask.
In this case, the T%.,s score is low and mitigates the high
Tprec SCore.

In order to maximize both, the precision and the sensitiv-
ity, the harmonic mean of the two values is taken.

T;m“ec * ,Tsens

L 1Dice — 1—2x%
e Tprec + TSS’I’LS

B. Training

We trained all models on our Wachterberg dataset for
around 40 Epochs with the clDice loss at an alpha value
of 0.5, further, we used the LION optimizer [15], [16] with
an Ir of 174 and L2-regularization 172, all models where
trained with a batch size of 32. For the submission to the
competition, we then finetuned the models on the dataset
provided through Kaggle for a further 30 Epochs with a
reduced Ir of 175, For the fine-tuning, we switched from
the clDice loss to only using the normal Dice loss.
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Figure DO.1. Comparison of decoders with ResNet34 as encoder network.
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Figure CO.1. Four example images of our dataset taken from Google
Maps.
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